skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ng, Pei_Jia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Among many mRNA modifications, adenine methylation at the N6position (N6‐methyladenosine, m6A) is known to affect mRNA biology extensively. The influence of m6A has yet to be assessed under drought, one of the most impactful abiotic stresses.We show thatArabidopsis thaliana(L.) Heynh. (Arabidopsis) plants lacking mRNA ADENOSINE METHYLASE (MTA) are drought‐sensitive. Subsequently, we comprehensively assess the impacts of MTA‐dependent m6A changes during drought on mRNA abundance, stability, and translation in Arabidopsis.During drought, there is a global trend toward hypermethylation of many protein‐coding transcripts that does not occur inmta. We also observe complex regulation of m6A at a transcript‐specific level, possibly reflecting compensation by other m6A components. Importantly, a subset of transcripts that are hypermethylated in an MTA‐dependent manner exhibited reduced turnover and translation inmta, compared with wild‐type (WT) plants, during drought. Additionally, MTA impacts transcript stability and translation independently of m6A. We also correlate drought‐associated deposition of m6A with increased translation of modulators of drought response, such asRD29A,COR47,COR413,ALDH2B,ERD7, andABF4in WT, which is impaired inmta.m6A is dynamic during drought and, alongside MTA, promotes tolerance by regulating drought‐responsive changes in transcript turnover and translation. 
    more » « less